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Abstract. The linear hydrogen-bonded chain with the new type of one-particle potential

V (u) = V0

[
1

2
(A coshαu − 1)2 + B sinhαu

]
is considered in the continuum limit. This double Morse potential might be a single- or double-
well, symmetric or asymmetric one, depending on the parametersA and B. The solutions of
the equations of motion in the form of oscillatory and solitary waves are derived and discussed.
It is shown that in the asymmetric case there are no stable solitary waves.

1. Introduction

Linear chains of hydrogen bonds have attracted the interest of both physicists and chemists
for a long time. Usually one assumes that the proton in a hydrogen bond ‘lives’ in a double-
well potential, which might be of symmetric or asymmetric form. The former appears, for
example, in the ice crystal, the latter in the acetanilide (ACN) crystal, inα-helical proteins
and in formamide chains [1]. The chains of these two classes have the respective forms

· · · A · · · H–A · · · H–A · · · H–A · · · H–A · · · H–A · · · (1a)

and

· · · A · · · H–B · · · H–A · · · H–B · · · H–A · · · H–B · · · (1b)

where A and B are atoms or groups (like the O–H group in ice) and the H are protons.
The understanding of the dynamics of such systems is of great importance. They play a
significant role (especially the symmetric one) in the proton transfer phenomena which not
only appear in such simple structures as ice crystal but also seem to be related to certain
processes in the organic world [2]. The connection with proton transfer in biological systems
makes this study even more appealing.

The theory of the dynamics of such chains was discussed in the fundamental paper
by Antonchenko, Davydov and Zolotariuk [3] (see also [2] for details), where theφ4-
potential was used to represent the hydrogen bond. Extensive studies of the model and of
its application to the explanation of the role played by solitons in proton transfer phenomena
has been developed in the paper by Peyrard, Pnevmatikos and Flytzanis [4] (see also [5, 6]).

† E-mail: radosza@rainbow.if.pwr.wroc.pl.
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Two kinds of approach to the dynamics of such a chain are possible. Either two linearly
coupled sublattices are considered, one of which consists of heavy groups A and B and
the other one of light H atoms [7], or the heavy groups are considered to be rigid and
only the dynamics of the hydrogen protons is analysed. If the character of the heavy-group
sublattice is harmonic and the coupling between the sublattices is linear, the results of the
two approaches are essentially the same, except for the fact that in the former case a pair
of excitations, one in each sublattice, appears.

The proton dynamics in such chains has been often described using the following quartic
potential [8, 9]:

V(u) = 1

2
Au2 + 1

3
Bu3 + 1

4
Cu4.

Recent careful investigations have shown, however, that instead of this well known potential,
a double Morse potential should be used [10, 11]. The main advantage of this potential is
related to its physical origin: the Morse potential is a commonly accepted model for the
description of a covalent bond [11–13], like that between hydrogen and oxygen atoms; the
ab initio calculation proves that this choice is profoundly justified [14].

Such a potential is obtained as a sum of two Morse potentials (identical for a symmetric
potential and different for an asymmetric one) put together ‘back to back’. Following this
prescription one obtains a potential which may be written in a compact form:

U(u) = U0

[
1

2
(A coshαu − 1)2 + B sinhαu

]
(2)

whereU0 andA are constants assumed to be positive andB is an arbitrary constant.

Figure 1. The symmetric double- and single-well potential (a) and the double-well asymmetric
potential (b).

Apart from its relatively simple form, this potential has several interesting features both
from the formal and from the physical point of view. First, note that depending on the
choice of parameters it may be a double-well potential, a strongly anharmonic one-well
potential or a potential which is very flat at the bottom (forA = 1, B = 0). The potential
(2) is symmetric whenB = 0 (figure 1(a)) and asymmetric otherwise (figure 1(b)).

Another interesting feature of this model is that its quantum counterpart belongs to the
class of so-called quasi-exactly solvable models [15–20]. It turns out to be related to its
hidden symmetry (or hidden algebra), of a very special kind [21]. This allows one to find
in a closed analytical form several energy levels for a certain set of potential parameters.
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Though the double Morse potential is much less popular than theϕ4-model, some
thermodynamical and dynamical properties of its one-dimensional (1D) version in the
continuum limit have been discussed. Thermodynamical properties of its very special
case—of a symmetric model,B = 0, corresponding to an exactly solvable version of
its quantum mechanical counterpart—were discussed by Behera and Khare [22]. Using
a well known method [23], the relationship with a ground-state energy of an appropriate
quantum mechanical model, enabled the free energy of the 1D model to be determined.
This led to the astonishing—but wrong—conclusion that kinks do not contribute to the
thermodynamics in this case, in contrast to in theϕ4-model. The calculation of the free
energy, usually done by means of the WKB method, can be accomplished in a reasonable
way for this potential. It is due to the form of the potential hump, which is relatively flat,
that the WKB approximation works well even for energies close to the hump. One finds that
kinks do contribute to the thermodynamics (at low enough temperatures, of course), and that
the contribution is even more substantial than in the case of theϕ4-model (thermodynamical
properties will be considered in detail in a separate paper).

Babu and Baby [24] discussed the properties of solitary solutions in the Behera and
Khare version. A rather advanced mathematical approach led to the conclusion of the
presence of bell-shaped solitary-wave solution. This was for the following reasons.

(i) It is widely believed that non-trivial solitary solutions with zero topological charge
do not exist in 1D one-component models [26].

(ii) It is hard to understand the physical origin of such a solitary solution in this
symmetric double-well model.

This conclusion was extremely strange.
Recently, Kryachko [12] investigated the properties of the kink solution in a symmetric

version(B = 0) of 1D model (2).
In this paper we present a simple approach to the problem of dynamics of the classical

chain of atoms moving in the double-well on-site potential (2) and interacting via harm-
onic forces. This allows an elegant interpretation and classification of the solutions of the
Euler–Lagrange equation to be achieved for the linear chain in the continuum limit, for
both symmetric and asymmetric versions. Oscillatory pseudo-solitary and solitary waves
are the two different types of solution. In the framework of the approach presented one
avoids, in a rather natural way, mixing them up, which in fact caused the appearance of
the bell-shaped solitary solution in the symmetric case [24]. It is shown that this excitation
has some formal features of a solitary wave but cannot be considered as such because of its
significantly different properties. On the other hand, a bell-shaped solitary solution is found
in the case of an asymmetric potential (B 6= 0). It is shown, however, that this solution is
unstable.

The paper is organized as follows: in section 2 the problem is formulated; in two
subsequent sections 3 and 4 solitary and oscillatory solutions are discussed, respectively;
the energy and topological charge of solitary excitations are considered in section 5 and a
final discussion is provided in section 6; some calculations are given in the appendix.

2. Formulation of the problem

Let us consider particles (protons) of massm placed in the sites of a one-dimensional
chain with a constant intervala. The energy of a particle is a sum of its kinetic energy,
its potential energy in the on-site potential (2) and the effective energy of interactions
between the particles. We restrict the last component of the energy to the nearest-neighbour
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interaction and choose it in the simplest quadratic form.
Hence, the Hamiltonian of the model discussed can be written in the form

H =
∑

i

[
mu̇2

i

2
+ U(ui) + f

(ui − ui−1)
2

2

]
where U(ui) is the potential (2) andf is the spring constant describing the harmonic
interaction of the atoms in the nearest lattice sites.

When the interaction between the sites is large compared to the on-site potential
(f a2 � U0) it may be assumed that the displacementsui at neighbouring sites do not
differ considerably and we may pass to the continuum limit

xi = ia → x ui − ui−1 → a
∂u

∂x
.

The Hamiltonian of the system takes the form

H =
∫

dx

a

[
m

2

(
∂u

∂t

)2

+ f a2

2

(
∂u

∂x

)2

+ U(u)

]
.

Obviouslyu = u(x, t).
The Lagrangian corresponding to this system is

L =
∫

dx

a

[
m

2

(
∂u

∂t

)2

− f a2

2

(
∂u

∂x

)2

− U(u)

]
.

The Euler–Lagrange equation derived from this Lagrangian has the form

∂2w

∂ζ 2
− ∂2w

∂τ 2
= V ′(w) = A sinhw(A coshw − 1) + B coshw (3)

where we have introduced the following notation that will be used further in this paper:

c2
0 = f a2

m
ω2

0 = U0α
2

m
τ = ω0t ζ = ω0

c0
x w = αu V = U

U0
.

(4)

The zeros of the force on the right-hand side of equation (3) in the symmetric case (B = 0),
corresponding to the minima of the on-site potential, are±w0, where

w0 = 2a tanh

√
1 − A

1 + A
.

Equation (3) is sometimes called a double-sinh–Gordon equation. In the present paper we
will search for ‘travelling’ solutions of this equation, i.e. for the solutions of the form

w = w(ωτ − κζ ). (5)

Inserting (5) into equation of motion (3), one obtains

(κ2 − ω2)
d2w

ds2
= V ′(w) (6)

where

s = κζ − ωτ.

In this way the problem is reduced to the description of a single fictitious particle of
mass

M = |κ2 − ω2| (7)
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in: (i) an inverted potential,−V (w), when κ2 − ω2 > 0; or (ii) a potentialV (w) when
κ2 −ω2 < 0. For each of these cases, further considerations must be carried out in separate
ways.

3. The solitary-wave solutions

First, let us consider the first case

κ2 − ω2 > 0

where the motion of the fictitious particle takes place in the inverted potential. Integrating
equation (6) we obtain

E ≡ −ε2

2
= κ2 − ω2

2

(
dw

ds

)2

− V (w). (8)

Figure 2. The inverted potential used for calculation of the kink solution.

In the symmetric case,B = 0, we are interested in the motion of the particle within
the well (figure 2), since only such a case corresponds to the solutions of the field equation
(3) having finite energy. The condition for the energy of the fictitious particle is therefore
(cf. figure 2)

−1

2
(1 − A)2 < E 6 0

and we see thatε is real and satisfies the relation

(1 − A) > ε > 0.

From figure 2 it is clear that there are two possible kinds of motion for such energies: the
periodic anharmonic one forE < 0 and the aperiodic one forE = 0. The former may
be approximated by harmonic motion when the amplitude of oscillations is small, i.e.E is
close to−(1 − A)2/2 (cf. figure 2) whereas the latter may be considered as its limit for
large-amplitude motion.

The solution in the case whereE = 0, obtained by integration of equation (8) (see the
appendix), has the form

w = ±2a tanh

[√
1 − A

1 + A
tanh(γ1(s − s0))

]
(9)
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where

γ1 = 1

2

√
1 − A2

κ2 − ω2
.

Figure 3. The kink solution (a) and a periodic solution (b) corresponding to the inverted
potential.

Let us consider the asymptotic behaviour of the solution (9), for definiteness with the
sign ‘+’. We have

w −→ ±2a tanh

√
1 − A

1 + A
= ±w0 s → ±∞.

It is the kink solution of the equation of motion (figure 3(a)).
The conditionκ2 − ω2 > 0 contains the case whereω = 0. In other words, the kink

solution may be a static one.
The periodic solutions of the equation (8), appearing forE < 0, have the form (see

figure 3(b))

w(ζ, τ ) = 2a tanh

[√
1 − A − ε

1 + A − ε
sn(γε1(s − s0), k)

]
(10)

where

γε1 = 1

2

√
1 − (A − ε)2

κ2 − ω2
k = 1 − (A + ε)2

1 − (A − ε)2
.

In the limit ε → 0 we havek2 → 1 and

γε1 → γ1 = 1

2

√
1 − A2

κ2 − ω2
.

Owing to the relation

sn(ϑ, k = 1) = tanhϑ

we obtain the kink solution.
In the asymmetric case (B 6= 0), the solution has a rather complicated form (see the

appendix). Nevertheless, some qualitative conclusions can be drawn easily. From figure 4(a)
it is clear that the periodic oscillations will have the same character as in the symmetric
case. The kink excitation, however, can no longer exist when the potential minima are not
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Figure 4. The asymmetric inverted potential in which a bell-shaped solution appears (a) and
such a solution (b).

degenerate. Instead, a bell-shaped soliton-like excitation appears, which is given by the
formula

wB(ζ, τ ) = w1 + 1

a + b cosh(β(κζ − ωτ))
(11)

(see figure 4(b)). Detailed calculation along with the formulae for the coefficients is given
in the appendix.

Let us note that although this solution may form a static configuration, as in the previous
case, it differs significantly from the kink. This is discussed in more detail in section 5.

4. Oscillatory solutions

Let us now consider the case where

κ2 − ω2 < 0

in which the motion of the fictitious particle takes place in the simple potential.
In this case the first integral of motion is

E ≡ ε2

2
= ω2 − κ2

2

(
dw

ds

)2

+ V (w). (12)

For the symmetric potential (B = 0), the possible forms of motion in this case include
small-amplitude oscillations around the pointsw = ±w0 (see figure 1) forE < (1− A)2/2
(they may be linearized to harmonic oscillations in the small-amplitude limit), large-
amplitude oscillations aroundw = 0 for E > (1−A)2/2, and aperiodic solutions separating
them, which correspond toE = (1 − A)2/2.

In the case whereE = 1
2(1− A)2, the solution obtained by integrating the first integral

of the equation of motion is

w = ±2a tanh

[ √
1 − A

cosh(γ2(s − s0))

]
(13)

where

γ2 =
√

A(1 − A)

ω2 − κ2
.
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The solution is presented in the figure 5(a).
This excitation reminds one of a bell-shaped solitary solution (11). However, unlike the

kink solution (9) or the soliton-like solution (11), it cannot be made stationary.
In order to obtain periodic solutions we must integrate equation (12) for a general value

of the energy parameterε. This may be done in three separate ranges of energy.
For ε < (1 − A) the solution is

w = 2a tanh

[√
1 − A + ε

1 + A + ε
dn(γε2(s − s0), k)

]
(14)

where

γε2 = 1

2

√
1 − (A − ε)2

ω2 − κ2
k2 = 4Aε

1 − (A − ε)2
.

The period of the function dn(ϑ, k) is 2K(k), whereK(k) is the complete elliptic integral
of the first kind with the modulusk.

In the limit

ε → (1 − A) ⇒ k2 → 1 γε2 → γ2.

Taking into account

dn(ϑ, k = 1) = 1

coshϑ
the solution (14) may be written in the form (13).

When 1− A < ε < 1 + A, the solution is

w = 2a tanh

[√
1 − A + ε

1 + A + ε
cn(γε3(s − s0), k)

]
(15)

where

γε3 =
√

Aε

ω2 − κ2
k2 = 1 − (A − ε)2

4Aε
.

The period of the function cn(ϑ, k) is equal 4K(k).
In the limit ε → (1 + A) we havek → 0 and due to the relation

cn(ϑ, k = 0) = cosϑ

the solution takes the form

w(ζ, τ ) = 2a tanh

[
cos(γ3(s − s0))√

1 + A

]
(16)

with

γ3 =
√

A(1 + A)

ω2 − κ2
.

Finally, for ε > (1 + A) we get

w = 2a tanh

[√
ε − A + 1

ε + A + 1
sn(γε4(s − s0), k)

]
where

γε4 = 1

2

√
(ε + A)2 − 1

ω2 − κ2
k2 = (ε − A)2 − 1

(ε − A)2 − 1
.



A hydrogen-bonded chain with a new potential 4333

The period of the function sn(ϑ, k) is equal 4K(k).
In the limit ε → (1 + A),

sn(ϑ, k = 0) = sinϑ

and we obtain the solution (16) up to a phase shift.

Figure 5. The fast-travelling soliton-like solution of the symmetric problem (a) and the soliton
and antisoliton solutions of the asymmetric case (b).

In the asymmetric case (B 6= 0), the periodic solutions will have the same character as in
the symmetric case. For some range of energies two kinds of periodic solution will appear
for one value of energy, corresponding to the motion in two inequivalent wells. Instead of
the soliton-like solution (13), identical to the corresponding antisoliton-like solution up to
the sign, we obtain two different solutions (figure 5(b)). ForB > 0 they are small-amplitude
soliton-like and large-amplitude antisoliton-like solutions.

Figure 6. A plot of the functionf (A) defining the mass of
the kink.

5. Energy and topological charge of solitary solutions

The energy of the kink and antikink in the symmetric potential is given by the expression
(written in the original variables)

E =
∫ ∞

−∞

dx

a
ε(x)
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whereε(x) is the density of energy:

ε(x) = m

2

(
∂u

∂t

)2

+ mc2
0

2

(
∂u

∂x

)2

+ V (u(x, t)) .

Substituting the kink solution (9) into the above formula we obtain

ε(x) = V0(1 − A2)

κ2 − ω2
cosh4

(
ω0

c0
γ1(κx − ωc0t)

)
×

[
1 − tanh2 αu0

2
tanh2

(
ω0

c0
γ1(κx − ωc0t)

)]−2

.

This expression shows that

ε = ε(κx − ωc0t)

and that the energy density is localized around the pointx such that

κx − ωc0t = 0.

This point moves along thex axis with the velocity

v = ω

κ
c0 < c0

i.e. the solution represents a solitary wave. The evaluation of the energyE leads to the
result

E = 2V0c0f (A)

aκω0

√
1 − v2/c2

0

where

f (A) = ln

[
1

A
(1 +

√
1 − A2)

]
−

√
1 − A2.

From the expression for energy it follows that the mass of the kink is equal to

Mk = 2V0

ac0κω0
f (A).

The mass of the kink depends substantially on the parameterA, 0 < A < 1, of the on-site
potentialV (w). For smallA, i.e. for a high potential barrier, the mass is large—the kink
is heavy. For values ofA approaching 1 the mass becomes small and we have a light
kink. The plot of the functionf (A) is presented in figure 6. Forv � c0 the ‘classical
approximation’ holds:

E = Mkc
2
0√

1 − v2/c2
0

≈ Mkc
2
0

(
1 + v2

2c2
0

)
≈ Mkc

2
0 + 1

2
Mv2.

The situation is different in the case of bell-shaped excitations, both slow (11) and fast
(13) ones. In these cases in the limit wheret → ∞ the chain (or field) takes the value
corresponding to the local minimum (slow excitations) or local maximum (fast ones) of the
potential. The resulting energy of the whole chain is infinite in the limit of infinite length
of the chain.

Let us define the topological current for a solitary solution of a non-linear field equation
given, up to a multiplicative factor, by the expression

Jµ = εµν ∂u

∂xν
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where x0 ≡ t , x1 ≡ x and εµν is the antisymmetric tensor for the given dimension of
the space. If we assume the solutions to be smooth, the derivatives with respect to any
coordinates commute and one obtains the following local conservation law for the current
defined above:∑

µ

∂Jµ

∂xµ
= 0.

The globally conserved topological charge is obtained by integration of the zeroth
(time) component of the topological current over the space. In one dimension this may
be performed in a general case, yielding (still up to a multiplicative factor)

Q =
∫ ∞

−∞
J 0 dx =

∫ ∞

−∞

∂u

∂x
dx = u(∞) − u(−∞).

Thus, the topological charge for a solitary solution in one dimension is just proportional to
the difference of the field values in plus and minus infinity.

Using this fact we may conclude that the topological charge of the kink appearing as
the low-velocity (or stationary) solution for the symmetric problem is non-zero (it may be
normalized to be, e.g., unity), whereas the topological charge of any of the bell-shaped
solutions is zero.

6. Discussion

We have shown here how the excitations in a linear chain of double-well hydrogen bonds
might be classified into solitary and oscillatory waves. According to the generally accepted
interpretation, the former one is characterized by spatially localized energy. In the case
of a Morse-originated double-sinh–Gordon potential, solutions have a rather complicated
form, compared withϕ4-model. Due to the proposed method of treatment, one can easily
recognize all of the interesting properties of the excitations in this (and similar) cases.

Among the oscillatory solutions one finds small- and large-amplitude ones, corres-
ponding to oscillations around local minima and local maximum, respectively. They are
separated by a bell-shaped-like excitation (13), which tends to zero,w → 0, as time
t → ±∞ (see figure 5(a)). In the case of the asymmetric potential, two different solutions
of that type are present (figure 5(b)). These solutions of course cannot be made static. In
[24], a certain type of symmetric potential (2) has been investigated. By using a rather
sophisticated mathematical method the solution (13) was found and called a solitary wave.
It was assumed, mistakenly, that it might be made static, and even the problem of stability
of its static version was investigated.

Among the solitary waves (9)–(11), the best known one is kink solution (9). Its energy
is spatially localized and it carries a topological charge equal to 1. Snoidal solutions (10)
are periodical functions, so they will naturally appear when a finite chain with periodic
boundary conditions is considered.

The bell-shaped solution (11) (a similar one was found inϕ4-model in [25]) requires
additional discussion due to certain aspects. On the one hand it may form a stationary
configuration of the chain like the kink solution; on the other hand its topological charge is
equal to zero, which is extremely strange in this one-dimensional case (see, e.g., [26]). Let
us note that the energy of the sector of this excitation lies above the energy of the vacuum
sector by the termε0L, which tends to infinity as the length of the chainL → ∞. It also
turns out that the bell-shaped solution, unlike solitons or kinks, is unstable. In fact, studying
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the stability of (11) in the static case, one looks at the small oscillations,ψ(x, t) = eiωtφ(x),
around staticwB(x):

w(x, t) = wB(x) + ψ(x, t). (17)

Linearizing inφ(x) the equation of motion (3), the eigenvalue problem is obtained:

− φ′′(x) + V ′′(wB(x))φ(x) = ω2φ(x). (18)

BecausewB(x) breaks translational symmetry, the Goldstone mode exits in this case.
Similarly to what is found in the case of the kink solution, this zeroth ortranslational
mode(see, e.g., [23]) isw′

B(x), which satisfies (18) with the eigenvalueω2 = 0. In the case
of a kink solution, one can easily verify that this zeroth mode is nodeless, so it corresponds
to the lowest eigenvalue and eventually the kink is stable. In this case however,w′

B(x) has
got one node (cf. figure 4(b)), so there exists a nodeless solution of (18), corresponding
to a lower eigenvalue,ω2 < 0. Therefore, the bell-shaped solution is unstable. This may
change if the bell-shaped soliton moves. In this case one may observe a relative dynamical
stabilization of this solution: the characteristic decay time becomes longer. The discussion
of the stability also gets more complicated if two-component chains are considered. More
detailed analysis of these problems will be contained in a separate paper.

The phenomena discussed formally in this paper are related, among other features, to
the proton transfer process in hydrogen-bonded chains. The kink solution moving along a
chain of the type (1a) or (1b) corresponds to the transition of the protons from one potential
minimum to the other, which is equivalent to transferring a single proton along the chain.
Another effect—the Bjerrum defect which restores the chain to its original state allowing
the next proton transfer to take place [2]—may also be viewed as a transition between two
equivalent positions of the group A propagating along the chain. Discussion of both of
these processes requires a more complex model, as considered, for example, in [6].

Finally, let us mention that, although quasi-exact solvability of the potential (2) in the
quantum limit does not influence dynamical properties of the classical one-dimensional
chain, in the studies of thermodynamical properties it might be of great importance.
This problem will be discussed in our next paper where also an exactly solvable—in a
thermodynamic limit—version of the above model will be presented.

Appendix

In this appendix we will briefly describe the way in which the integration of the equations
of motion may be performed.

The key substitution used to carry out the integration is

z = tanh
w

2
.

Introducing this new variable into the equations (8) and (12) one obtains, after some algebra,(
2

dz

ds

)2

= ±F(z) (A1)

where

F(z) = [
(1 + A)2 − ε2

]
z4 + 2Bz3 − 2(1 − A2 − ε2)z2 − 2Bz + (1 − A)2 − ε2

and the plus and minus sign corresponds to the casesκ2 − ω2 > 0 and κ2 − ω2 < 0
respectively (note the difference in the definition ofε in these two cases). The classical
motion takes place in the regions where±F(z) > 0, with the proper sign chosen.
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Now, there are two general ways of solving equation (A1). One may transform it in
the standard way to the form

s =
∫

dz√±F(z)
(A2)

and calculate the integral. Alternatively, it may be possible to transform it to the form
defining Jacobi elliptic functions.

In the case of a symmetric potential, the second method is used. For example, in the
range whereκ2 − ω2 > 0, as considered in section 3, we may use the substitutions

ϑ = 1

2

√
1 − (A − ε)2 s and z̃ =

√
1 + A − ε

1 − A − ε
z

to obtain the equation(
dz̃

dϑ

)2

= (1 − z̃2)(1 − k2z̃2) where k2 = 1 − (A + ε)2

1 − (A − ε)2
.

This equation is known in the theory of elliptic functions as the equation defining the Jacobi
sine amplitude function with modulusk [27]. Thus, we have at once

z̃ = sn(ϑ, k)

which leads to the solution (10).
In the limit ε → 0 this solution takes the form (9).
For the asymmetric potential (B 6= 0), the solution in the general case is technically

more difficult. One needs to write the solution in the form of the integral (A2) and integrate
it. The solutions for any kind of such an integral are given in [27] in terms of the zeros of
the polynomialF(z). These, in turn, may be found analytically if this is desirable. On the
other hand, the number and the character of the zeros may be deduced from the qualitative
analysis of the motion. As an example, we will derive the bell-shaped solution (11).

In this case, the value of the constantε is chosen equal to the lower maximum of the
inverted potential (see figure 4). Hence, there is one negative double root and two single
positive roots of the polynomialF(z). It may be therefore written in the form

F(z) = D2(z − z1)
2(z − z2)(z − z3)

where

D2 = (1 + A)2 − ε2.

ε is the value of the potential corresponding to the lower minimum andz1, z2, z3 are the roots
of the polynomialF arranged in increasing order. To find the solution we must calculate
the integral

t = 1

D

∫
dz

(z − z1)
√

(z − z2)(z − z3)
= 1

D

∫
dζ

ζ
√

(ζ − ζ2)(ζ − ζ3)

= 1

D

1√
ζ2ζ3

a cosh

[
2ζ2ζ3

ζ3 − ζ2

(
1

ζ
− ζ2 + ζ3

2ζ2ζ3

)]
where we performed the shift

ζ = z − z1 ζ2,3 = z2,3 − z1 > 0 ζ2 < ζ3.

Upon inverting, this yields the solution (11) with

a = z2 + z3 − 2z1

2(z2 − z1)(z3 − z1)
b = z3 − z2

2(z2 − z1)(z3 − z1)

β = D
√

(z2 − z1)(z3 − z1).
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